Министерство образования и науки Российской Федерации ФГАОУ ВО «МФТИ (ГУ)»

Образец билета экзамена по физике для переводников и восстанавливающихся на третий семестр

- 1. (4) На какую величину удлиняется однородный стержень, подвешенный за один конец, под действием собственного веса. Модуль Юнга материала стержня E, его длина L, площадь поперечного сечения S, масса M.
- 2. (4) На горизонтальной поверхности стола стоит цилиндрический сосуд, в который налита вода до уровня H. На какой высоте h надо сделать небольшое отверстие в боковой стенке сосуда, чтобы струя воды встречала поверхность стола на максимальном расстоянии от сосуда? Воду считать идеальной жидкостью.
- 3. (4) Однородный стержень длиной L подвешен за один конец и может вращаться без трения вокруг горизонтальной оси. Определить угол, на который отклонится стержень при попадании в него кусочка пластилина массой m. Считать, что он летит горизонтально со скоростью v и прилипает к середине стержня на расстоянии L/2 от точки A. Масса стержня M=6m. Угол отклонения стержня меньше 90° .
- 4. (4) В закрытом сосуде объемом V находятся азот и гелий при температуре T и давлении P. Массы газов равны. Молярные массы гелия и азота равны, соответственно μ_1 и μ_2 . Какое количество теплоты надо сообщить смеси газов, чтобы нагреть ее на ΔT ?
- 5. (4) Одноатомный идеальный газ находится под поршнем в адиабатически изолированном вертикально расположенном цилиндре. Наружное давление пренебрежимо мало. Температура газа T_0 . Масса груза на поршне, определяющая давление газа, внезапно увеличилась вдвое. Насколько изменилась температура газа и возросла энтропия, приходящаяся на одну молекулу, после установления нового равновесного состояния?

Решение задач

1) Разобьём стержень на тонкие диски, толщиной dx. Рассмотрим диск, расположенный на расстоянии x от закреплённого конца. На него действует сила $F = \frac{M}{L}(L-x)g$, обусловленная весом части стержня, расположенной снизу от диска.

Используя закон Гука, найдём изменение толщины диска dL_x : $F/S = E \frac{dL_x}{dx}$.

Выполнив суммирование по всем дискам, получим величину удлинения стержня:

$$\Delta L = \sum dL_x = \int_0^L \frac{F dx}{S \cdot E} = \frac{Mg}{LSE} \int_0^L (L - x) dx = \frac{MgL}{2SE}.$$

2) По формуле Торричелли скорость истечения струи $v = \sqrt{2g(H-h)}$.

Время полёта струи до стола $t=\sqrt{\frac{2h}{g}}$.

За это время вода окажется на расстоянии $L = L(h) = v \cdot t = 2\sqrt{h(H-h)}$. (1)

Значение L максимально для $h=h_0$, для которого $L_h'(h_0)=0.$

Дифференцируя (1) по h, получим $\frac{1}{\sqrt{h(H-h)}}(H-2h)=0$. Таким образом, $h_0=H/2$.

3) Из закона сохранения момента импульса $I\omega=mv\frac{L}{2}$. Здесь $I=\frac{ML^2}{3}+m\left(\frac{L}{2}\right)^2=\frac{9}{4}mL^2$. Следовательно, $\omega=\frac{2}{9}v/L$.

Из закона сохранения энергии $I\frac{\omega^2}{2}=(M+m)g\frac{L}{2}(1-cos\phi)$

$$\Rightarrow \frac{9}{4}mL^2\left(\frac{2}{9}v/L\right)^2 = 7mgL(1 - cos\varphi_{max})$$

Ответ: $\cos \varphi_{max} = 1 - \frac{v^2}{63aL}$.

4) Для гелия $C_{1V} = \frac{3}{2}R$. Для азота $C_{2V} = \frac{5}{2}R$.

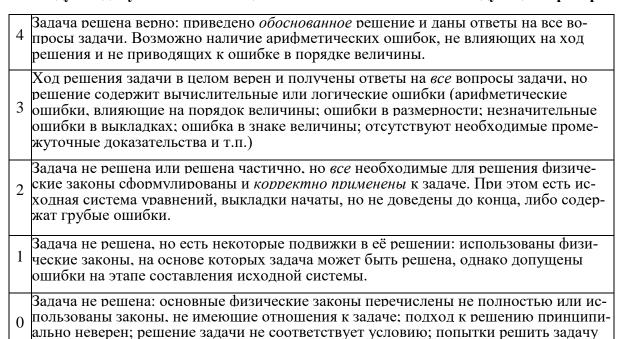
$$Q = \frac{m}{\mu_1} C_{1V} \Delta T + \frac{m}{\mu_2} C_{2V} \Delta T$$

$$PV = \left(\frac{m}{\mu_1} + \frac{m}{\mu_2}\right) RT$$

Из данных соотношений получаем $Q=rac{3\mu_2+5\mu_1}{\mu_2+\mu_1}rac{PV}{2T}\Delta T$.

5) Из закона сохранения энергии $\nu C_V(T-T_0)=2mg(x_0-x)$. Здесь x это расстояние от дна до поршня. Из уравнения состояния идеального газа $P_0\cdot (x_0S)=\nu RT_0$ и $P\cdot (xS)=\nu RT$.

Здесь $P_{
m o}S=mg$ и PS = 2mg, т.к. масса груза полностью определяет давление газа.


Следовательно, $mgx_{\rm o}=vRT_{\rm o}$ и 2mgx=vRT. Подставляя эти соотношения в исходное

равенство, получим
$$\nu \frac{3}{2}R(T-T_{\rm o})=2\nu RT_{\rm o}-\nu RT.$$
 \Rightarrow $T=\frac{7}{5}T_{\rm o}.$

Изменение энтропии идеального газа $\Delta S = \nu C_P \ln \left(\frac{T}{T_0} \right) - \nu R \ln \left(\frac{P}{P_0} \right)$

$$\Rightarrow \frac{\Delta S}{N} = \frac{5}{2} k \ln \frac{7}{5} - k \ln 2$$
. Здесь $N = \nu N_A$ – число молекул газа, $C_P = \frac{5}{2} R = \frac{5}{2} k N_A$.

За каждую задачу выставляется целое число баллов согласно следующим критериям:

Оценка за письменную работу равна половине суммы баллов по всем задачам, округленной в сторону ближайшего целого числа. Для итоговой оценки используются следующие критерии:

```
«отлично» (8, 9, 10)
«хорошо» (5, 6, 7)
«удовлетворительно» (3, 4)
«неудовлетворительно» (0, 1, 2)
```

не было.